MA34110: PARTIAL DIFFERENTIAL EQUATIONS

Solutions 4
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1. By considering the energy integral
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prove that the following heat equation problem has a unique solution.

U = gy, 0<z<I[,0<t<T,
u(z,0) = f(z), 0<z<lI,
U(O,t) = (l)(t)? u(l7t) = ¢(t)a 0<t<T.

Solution: Suppose for a contradiction that there are two distinct solutions, u; and ug say.
Their difference u = u; — ug satisfies the problem

U= Clge, 0<a<Il,0<t<T,
u(z,0) =0, 0<z<lI,
u(0,t) =0, wu(l,t)=0, 0<t<T.
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We compute using integration by parts:
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Hence E(t) is decreasing. Moreover, we note that E(t) > 0 for all ¢, and E(0) = 0. Therefore
E(t) = 0 for all ¢t > 0, which implies u = 0, that is u; = ug. This contradicts our original
supposition that u; and ue were distinct solutions and completes the proof.

2. Using the mazimum principle for the heat equation u; = c*ugz, on the rectangle R == [0,] x
[0,T], prove the minimum principle: the solution to the heat equation on R attains its mini-
mum on the parabolic boundary II = ([0,1] x {0}) U ({0} x [0,T]) U ({l} x [0,T7).

NB: You do not need to re-prove the mazximum principle.

Solution: Let v = —u. Then v satisfies the heat equation (since Vp— gy = —Up+CPUgy = 0)
and so obeys the maximum principle; that is, v attains its maximal value on the parabolic
boundary II. We deduce that u attains its minimum value on II.
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3. Suppose u satisfies the heat equation uy = ugzy on the domain R = [0,1] x [0,100] with the
following initial and boundary conditions

u(z,0) =0, 0<z<1,
u(0,t) =te”t, w(l,t)=0,t>0.
Find constants m, M such that m < u(z,t) < M for all (x,t) € R.

Solution: Since we know that w satisfies the heat equation, it must attain its maximal
value along the parabolic boundary. Similarly the minimal value is obtained on the parabolic
boundary (see previous question). It is therefore enough to calculate the maximum of te™*
which is e~! attained at t = 1. Thus 0 < u(z,t) < e L.

4. Compute the Fourier transform of e~%*l where a > 0 is a constant.
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5. A function f € L*(R) has Fourier transform given by f(&) = e ¢"/8.

(a) What is the Fourier transform of f’ (i.e. the transform of the derivative of f)?
(b) Use the Fourier inversion theorem to find f(x).

(c) Using your answers to (a) and (b), along with any theorems or properties relating to
the Fourier transform that you know, deduce the function g whose Fourier transform is
given by

g(6) = 26e5/,

Give your final answer explicitly in closed form (i. e. not as an integral).
Solution

(a) By the derivative theorem, F{f'} = —i¢F{f} = —ice /8,
(b) Noting that f € L'(R), we have from the Fourier inversion theorem that
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Here we have used the substitutions y = £ + 4ix and z = @.



(c) Note that g(€) = 2te~¢/4 = 2i(e~¢*/8)(—ice€/8) = UF{fYF{f'} = 2iF{f = f'} by
the convolution theorem. Fix x. Then:

g(z) = 2i(f * f)(z) = 2i / f(x —y)f (y)dy (by definition of convolution)
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(a) Let f € L'(R) be a real valued function. Show that its Fourier transform f satisfies
F(&) = f(=¢),
where f* denotes the complex conjugate of f (this property is called Hermitian symme-

try).

(b) Derive a similar relationship between the transform of a purely imaginary function g
and its complex conjugate.

(¢) Show that the Fourier transform of a real even function is real.
(d) Show that the Fourier transform of a real odd function is imaginary.
(e) Show that the Fourier transform of an even function is even.

Solution

(a) Note that
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(b) Note that for a real function h defined by g(z) = ih(z),

g (& = (/ g(a:)eigmd:L‘) = (/ z'h(:v)[cos(&:v)+isin(£:ﬂ)]d:z:>

= / —th(z) cos(éx) — h(x)sin(§z)|dz = / —g(z)[cos(éx) — isin(&x)]dx
~ [ ~gla)e e = ~g(-¢)

(c) Let f be real and even. Then
7€) = [ f@esede = [ fla)ieos(én) + isin(€alds = [ (o) cos(éa)d

which is clearly real.
(d) Let f be real and odd. Then

o0

f©) = [ f@erar = [ fa)eos(en) + isin(enlds = [ if(z)sin(en)da,
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which is clearly imaginary.
(e) Let f be even. Then

f(=¢&) = 7 f(w)e e = 7 fl@)et " da,
Make the substitution y = —x_:oo N
7 f(z)e " de = — _/Ooﬂ—y)eiéydy = 7 f(=y)evdy,
and since f is ;:n we have that i h
7 f(=y)evdy = 7 fy)evdy = f(6).

That is, the Fourier transform of an even function is even.

7. Find the Fourier transform with respect to x of the solution to the following boundary value
problem for Laplace’s equation:

Uy + Uyy = 0, xeR, ye|0,1];
u(x,0) =0, r € R;
u(x,1) = e lol, z eR.
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Solution: Define u(&,y) as the Fourier transform of u with respect to x. That is:

[e.o]

Flu} = (e, y) = / w(z, y)eSedz,

—0o0

Then the derivative theorem gives that
Fluge} = (—i€)(—i&) Flu} = —&*a,

while o
U
F {Uyy} = OTJQ

(since FTs are taken wrt x, not y here). Thus applying Fourier transforms to the PDE
(Laplace’s equation) yields

Since this only has differentiation wrt one independent variable, we can solve in a similar
fashion to an ODE. The auxiliary equation is m? — £2 = 0, whence

a(&,y) = A(E)ellV + B(g)e Iy,

We will now apply the boundary conditions to find the functions A and B. Taking FTs wrt
x of the BCs gives

{u(f, 0) =0, £ER;

u(§,1) = leQ, € € R (see Q1 with a =1).

The first condition yields A(§) = —B(&). The second condition then gives

2
1+&2

— A(€) (€€l = 7€) = 24(¢) sinn(¢)).

Thus A(&) = Cslci(g') and so B(§) = —%. Finally, therefore, the Fourier transform wrt z

of u is given by

_ _esch([€]) 7 ey _\§|y> _ 2csch(|€]) sinh([¢y)
u({?@/) - 1 + {2 (6 € - 1 + €2 .
8. (Harder) Prove that the function
2sin(&/2
fla) = 2202
3
does not belong to L*(R).
Solution: Let f(§) = %mf(é/?) Noting that the integrand is non-negative, it is enough to

show that [ |f(€)|d¢ does not converge. Consider the intervals
0

I = [2kn,2(k+ )7), k=0,...,n,



and define fi to be the restriction of f to the interval I. Then on each interval I, fi is a

continuous, integrable function satistying |f(£)| >

(n+1)m 2(k+1)m

sin 2 |

k+1) . Thus for n € N,
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Letting n — oo and recalling that the series %
m=1

is divergent, we deduce that f ¢ L'(R).



