

Assignment 4

2025–26

Starred questions due in at any point before the end of term.

1. *By considering the energy integral

$$E(t) = \frac{1}{2} \int_0^l u^2(x, t) dx,$$

prove that the following heat equation problem has a unique solution.

$$\begin{cases} u_t = c^2 u_{xx}, & 0 \leq x \leq l, 0 \leq t < T, \\ u(x, 0) = f(x), & 0 \leq x \leq l, \\ u(0, t) = \phi(t), \quad u(l, t) = \psi(t), & 0 < t < T. \end{cases}$$

Hint: Suppose for a contradiction that there are two distinct solutions. What problem does their difference satisfy? What sign is $E(t)$? Show that $E(t)$ is a decreasing function and make deductions.

2. Using the maximum principle for the heat equation $u_t = c^2 u_{xx}$ on the rectangle $R := [0, l] \times [0, T]$, prove the *minimum principle*: the solution to the heat equation on R attains its minimum on the parabolic boundary $\Pi = ([0, l] \times \{0\}) \cup (\{0\} \times [0, T]) \cup (\{l\} \times [0, T])$.

NB: You do not need to re-prove the maximum principle.

3. *Suppose u satisfies the heat equation $u_t = u_{xx}$ on the domain $R = [0, 1] \times [0, 100]$ with the following initial and boundary conditions

$$\begin{cases} u(x, 0) = 0, & 0 \leq x \leq 1, \\ u(0, t) = te^{-t}, \quad u(1, t) = 0, & t \geq 0. \end{cases}$$

Find constants m, M such that $m \leq u(x, t) \leq M$ for all $(x, t) \in R$.

4. *Compute the Fourier transform of $e^{-a|x|}$, where $a > 0$ is a constant.

5. *A function $f \in L^1(\mathbb{R})$ has Fourier transform given by $\bar{f}(\xi) = e^{-\xi^2/8}$.

- (a) What is the Fourier transform of f' (i.e. the transform of the derivative of f)?
- (b) Use the Fourier inversion theorem to find $f(x)$.
- (c) Using your answers to (a) and (b), along with any theorems or properties relating to the Fourier transform that you know, deduce the function g whose Fourier transform is given by

$$\bar{g}(\xi) = 2\xi e^{-\xi^2/4}.$$

Give your final answer explicitly in closed form (i. e. not as an integral).

6. (a) Let $f \in L^1(\mathbb{R})$ be a real valued function. Show that its Fourier transform \bar{f} satisfies

$$\bar{f}^*(\xi) = \bar{f}(-\xi),$$

where \bar{f}^* denotes the complex conjugate of \bar{f} (this property is called Hermitian symmetry).

(b) Derive a similar relationship between the transform of a purely imaginary function g and its complex conjugate.
 (c) Show that the Fourier transform of a real even function is real.
 (d) Show that the Fourier transform of a real odd function is imaginary.
 (e) Show that the Fourier transform of an even function is even.

7. *Find the Fourier transform with respect to x of the solution to the following boundary value problem for Laplace's equation:

$$\begin{cases} u_{xx} + u_{yy} = 0, & x \in \mathbb{R}, y \in [0, 1]; \\ u(x, 0) = 0, & x \in \mathbb{R}; \\ u(x, 1) = e^{-|x|}, & x \in \mathbb{R}. \end{cases}$$

8. (Harder) Prove that the function

$$\bar{f}(\xi) = \frac{2 \sin(\xi/2)}{\xi}$$

does not belong to $L^1(\mathbb{R})$.