

Assignment 1

2025–26

Starred questions (2a&b, 4a&b, 5, 8) due in either via Blackboard or on good-old-fashioned paper by 5pm, Thursday 23rd October.

1. (*ODEs practice*): Find the general solution of the following ODEs:
 - (a) $\frac{dy}{dx} - \frac{2y}{x} = 3x^3$;
 - (b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$;
 - (c) $y\frac{dy}{dx} = \frac{3}{x^2y}$;
 - (d) $\frac{dy}{dx} - y = 0$;
 - (e) $\frac{d^2y}{dx^2} + y = 0$.
2. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons.
 - (a) $u_x + xu_y = \sin x$; **★**
 - (b) $u_{xx} + uu_x = 0$; **★**
 - (c) $u_x + uu_y = u$;
 - (d) $u_x + 2u_y + 3 = x$.

[8 marks]
3. Find the general solution $u = u(x, y)$ of the PDE $u_{xy} = 3xy$.
4. (a) **★** Find the general solution $u = u(x, t)$ of the PDE
$$4u_x + 3u_t = 0.$$
(b) **★** Hence find the solution of the PDE $4u_x + 3u_t = 0$ satisfying the initial condition (for $t = 0$): $u(x, 0) = \cos x$.

[8 marks]
5. **★** Solve the boundary value problem
$$\begin{cases} x^2yu_x + 3u_y = 0, \\ u(x, 0) = \frac{1}{x}. \end{cases}$$

[10 marks]
6. Solve the linear equation
$$(1 + x^2)u_x + u_y = 0.$$

Hint: you might like to remind yourself of the derivatives of inverse trigonometric functions.
7. Solve the equation
$$(\sqrt{1 - x^2})u_x + u_y = 0,$$
with the condition $u(0, y) = y$.
8. **★** Using the method of characteristics, solve $u_x + u_y + u = e^{x+2y}$ with $u(x, 0) = 0$. [14 marks]