

ADRAN MATHEMATEG / DEPARTMENT OF MATHEMATICS

ARHOLIADAU SEMESTER 1 / SEMESTER 1 EXAMINATIONS

IONAWR / JANUARY 2025

MA34110 – Partial Differential Equations

The questions on this paper are written in English.

Amser a ganiateir - 2 awr

Time allowed - 2 hours

- Gellir rhoi cynnig ar bob cwestiwn.
- Rhoddir mwy o ystyriaeth i berfformiad yn rhan B wrth bennu marc dosbarth cyntaf.
- Cyfrifianellau Casio FX-83 neu FX-85 YN UNIG a ganiateir.
- Mae modd i fyfyrwyr gyflwyno atebion i'r papur hwn naill ai yn y Gymraeg neu'r Saesneg.
- All questions may be attempted.
- Performance in section B will be given greater consideration in assigning a first class mark.
- Casio FX-83 or FX-85 calculators ONLY may be used.
- Students may submit answers to this paper in either Welsh or English.

Section A

1. A partial differential equation (PDE) can be written in the form

$$Lu = g,$$

where L is an operator, u is the dependent variable and g is a known function of the independent variables.

(a) What can be said about L and g if the PDE is *linear homogeneous*? [2 marks]

(b) For each of the following equations, state the order and classify it as nonlinear, linear inhomogeneous, or linear homogeneous:

- (i) $u_x - 3u_xu_y + u_{yy} = \cos y$;
- (ii) $u_x + u_y = 2x^2 \cosh y$;
- (iii) $(u_x)^2 + (u_y)^2 = 2 \sin x$;
- (iv) $u_x - 2u_{xxx} + 3xu_x = 1$. [8 marks]

(c) Classify the following PDEs as parabolic, elliptic or hyperbolic:

- (i) $4u_{xx} + 2u_{xy} + 6u_{yy} + 2u_x - 3u = 0$;
- (ii) $3u_{xx} + 12u_{xy} + 12u_{yy} - 2u_x + 7u_y - u = 0$. [4 marks]

(d) Find the general solution $u = u(x, y)$ of the PDE $u_{xy} = 8xy + 1$. [3 marks]

2. Suppose the temperature, u , of a thin rod satisfies the heat equation $u_t = u_{xx}$ for $(x, t) \in (0, 3) \times (0, 6)$, with the following initial and boundary conditions:

$$\begin{cases} u(x, 0) = \frac{1}{3}(x^2 - 2x), & x \in [0, 3]; \\ u(0, t) = \sin\left(\frac{\pi}{12}t\right), & t \in [0, 6]; \\ u(3, t) = e^{-t/2}, & t \in [0, 6]. \end{cases}$$

(a) Specifically for the domain defined above, state the definition of the *parabolic boundary*, Π . [3 marks]

(b) State the maximum and minimum principles for the heat equation. [2 marks]

(c) Without solving the equation and stating clearly any results you use, find the minimum and maximum temperatures of the rod for all $(x, t) \in (0, 3) \times (0, 6)$. [8 marks]

(d) State the values of x and t for which the temperature is minimised. [2 marks]

3. Use the method of characteristics to solve the following boundary value problems:

$$(a) \begin{cases} u_x - 6u_y = 0, \\ u(0, y) = y^2; \end{cases} \quad (b) \begin{cases} xu_x + 2yu_y = 0, \\ u(1, y) = \cos y. \end{cases}$$

You should explain the steps in your working throughout. [6,8 marks]

4. Consider the following one-dimensional heat equation problem, describing the temperature of a one-dimensional rod of length L with insulated ends, whose initial temperature distribution is given by some known function f :

$$\begin{cases} u_t - c^2 u_{xx} = 0, & (x, t) \in (0, L) \times (0, T); \\ u(0, t) = u(L, t) = 0, & t \in [0, T]; \\ u(x, 0) = f(x), & x \in [0, L]. \end{cases} \quad (1)$$

(a) Using the method of separation of variables, find a solution of problem (1) in the form

$$u(x, t) = \sum_{n=1}^{\infty} X_n(x) T_n(t).$$

[11 marks]

(b) Hence, or otherwise, solve problem (1) with $c = 1$, $L = T = \pi$ and $f(x) = 3 \sin(8x)$. [4 marks]

5. Consider the Cauchy problem for the homogeneous wave equation on an infinite string:

$$\begin{cases} u_{tt} - c^2 u_{xx} = 0, & x \in \mathbb{R}, t > 0; \\ u(x, 0) = f(x), & x \in \mathbb{R}; \\ u_t(x, 0) = g(x), & x \in \mathbb{R}. \end{cases} \quad (2)$$

(a) What property of the string does the constant c describe? [1 mark]

(b) Suppose g is the zero function and $f \in C^2(\mathbb{R})$ is such that $f(x)$ is non-zero for all $x \in [0, 1]$ and is zero for all x outside this interval. Stating clearly any facts about wave equation solutions you use, give in terms of c both the smallest and largest positive values of t for which $u(5, t)$ is non-zero. [3 marks]

(c) Solve problem (2) for all $x \in \mathbb{R}$, $t > 0$, with $c = 1$, and f, g given by

$$f(x) = \sin(2x), \quad g(x) = 2x^2.$$

You do not need to simplify trigonometric expressions, but you should leave polynomials in their simplest possible form.

[5 marks]

SECTION B BEGINS ON THE NEXT PAGE

Section B

6. Use the method of characteristics to find the solution of the PDE

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u,$$

which satisfies the condition $u(x, 1) = x^2$. Give your answer in as simple a form as possible. [9 marks]

7. By considering the energy integral

$$E(t) = \frac{1}{2} \int_0^l u^2(x, t) dx,$$

prove that the following heat equation problem has a unique solution.

$$\begin{cases} u_t = c^2 u_{xx}, & (x, t) \in (0, l) \times (0, T); \\ u(x, 0) = f(x), & x \in [0, l]; \\ u(0, t) = \phi(t), & t \in [0, T]; \\ u(l, t) = \psi(t), & t \in [0, T]. \end{cases}$$

You may assume existence without proof.

[7 marks]

8. Let u be a solution to the Cauchy problem for the heat equation:

$$\begin{cases} u_t - c^2 u_{xx} = 0, & x \in \mathbb{R}, t > 0; \\ u(x, 0) = f(x), & x \in \mathbb{R}. \end{cases} \quad (3)$$

(a) Clearly stating any results that you use, show that the Fourier transform (taken with respect to x) of u satisfies

$$\frac{\partial \bar{u}}{\partial t} + c^2 \xi^2 \bar{u}(\xi, t) = 0.$$

[4 marks]

(b) Hence find an explicit expression for $\bar{u}(\xi, t)$, the Fourier transform of the solution to problem (3), in terms of $\bar{f}(\xi)$. [5 marks]

9. (a) List three properties that a *well-posed* problem in the sense of Hadamard must possess. [3 marks]

(b) By seeking a separable solution, show that the following problem is *ill-posed* in the sense of Hadamard:

$$\begin{cases} u_{xx} - tu_t + 2u = 0, & x \in (0, \pi), t \in (0, 1); \\ u(0, t) = 0, & t \in [0, 1]; \\ u(\pi, t) = 0, & t \in [0, 1]; \\ u(x, 0) = 0, & x \in [0, \pi]. \end{cases}$$

[13 marks]

10. Given that the problem

$$\begin{cases} u_t - c^2 u_{xx} = 0, & x \in \mathbb{R}, t > 0; \\ u(x, 0) = \phi(x), & x \in \mathbb{R}; \end{cases}$$

has solution given by

$$u(x, t) = \frac{1}{\sqrt{4\pi c^2 t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4c^2 t} \phi(y) dy,$$

derive the solution to

$$\begin{cases} v_t - c^2 v_{xx} = 0, & x > 0, t > 0; \\ v(x, 0) = \psi(x), & x > 0; \\ v(0, t) = 0, & t > 0. \end{cases}$$

You should justify any assertions you make throughout your derivation. [9 marks]

END OF EXAM PAPER